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ABSTRACT

During the last decade there has been resurgency in the application of fuzzy methods for the classification of remote sensing images, which are dominated by mixed pixels. These methods are used to unmix the classes within the mixed pixels or in other words perform sub-pixel classification. The methods appear to be more suitable in the Indian conditions where the areas are largely dominated by mixture of classes. In this paper, an overview of some prevalent fuzzy classification methods and the accuracy measures specifically designed to evaluate the performance of fuzzy classifications is presented.

1. INTRODUCTION

Often, remote sensing images are dominated by mixed pixels, which do not represent a single land cover class but contain two or more classes. For instance, In India, within a small stretch, one may find forest land, agricultural land, residential areas and water bodies. As a result, the land cover classes are generally mixed in nature and inter-grade gradually in an area (Foody and Cox, 1994). The mixed pixels also occur at the boundaries of two land cover classes. Furthermore, the mapping from remote sensing is generally carried out at regional and global scales, which requires coarse spatial resolution images where the chances of occurrence of mixed pixels are high. Error is likely to occur in the classification of image dominated by mixed pixels. The conventional use of crisp classification methods such as maximum likelihood classification (MLC) that allocates one class to a pixel may tend to over- and underestimate the actual areal extents of the classes on ground and thus may provide erroneous results. A range of alternative methods such as Linear Mixture Modeling (LMM), Fuzzy- c Means (FCM) algorithm, Artificial Neural Network (ANN) and Knowledge Based (KB) approaches may be applied. Foody et al. (1992) showed that MLC could also be employed as a fuzzy classification method. Recently, a newer classification method namely support vector machines (Brown et al., 2000) has also been applied to unmix the classes within a pixel. 

In essence, fuzzy methods tend to resolve a pixel into various class components, thus generating fuzzy class outputs in the form of fraction images. Many studies have shown that these fuzzy outputs are strongly related to the actual areal extents of classes on ground. For example, Fisher and Pathirana (1990), explored the use of MLC in fuzzy mode and showed a high correlation ranging from 47 % to 98 % between fuzzy outputs and actual class proportions on ground. Foody (1996) investigated the potential of ANN to derive land cover composition of mixed pixel and found significant correlations (> 80%) between ANN derived fuzzy outputs and class proportions on ground. Bastin (1997) used LMM, MLC and FCM to unmix the classes within a pixel and obtained correlation coefficients as 76% for LMM, 76.5% for MLC and 83.4% for FCM. Focshi and Smith (1997) compared ANN and KB for classification of mixed pixels and showed that both the methods yielded significant improvements in detection of sub-pixel woody vegetations. In India, Kant and Sbadarinatii (1998), addressed the utility of LMM to generate fraction images of vegetation, soil, and water/shade in parts of Andhra Pradesh, Orissa, Madhya Pradesh and Maharashtra. 

These sample studies sufficiently demonstrate the potential of fuzzy methods for land cover classification from remote sensing data. However, obtaining fuzzy outputs through these methods in the allocation stage only partially solve the problem of mixed pixels. When the image is contaminated with a large number of mixed pixels, it may be hard to find desired number of pure pixels during training and testing stages of a classification. Therefore, mixed pixels need to be incorporated into all the stages of the classification. For example, in a study by Foody and Arora (1996), mixed pixels were accommodated in all three stages of a supervised classification performed by MLC, LMM and ANN. A significant improvement in correlation was observed when mixed pixels were used to train and test the classifier. The classification produced by accounting for mixed pixels in all its stages has been named as ‘fully fuzzy classification’ (Zhang and Foody, 2001). 

This paper presents an overview of some fuzzy classification methods and also describes the ways to accommodate mixed pixels in all the stages of a classification. 
2. FUZZY CLASSIFICATION METHODS

Generally, supervised image classification is applied that involves three stages; training, allocation and testing. The conventional crisp classification methods allocate each pixel into one class thereby producing erroneous results when applied on coarse spatial resolution images like IRS Wifs and NOAA AVHRR images that may contain mixed pixels. It is thus imperative that these images be classified at sub-pixel level to produce accurate land cover classifications. Now, some fuzzy methods to generate sub-pixel classifications are discussed.

2.1 Fuzzy MLC 

MLC is the most widely used classification algorithm in remote sensing and has often been treated as a benchmark to evaluate the performance of the new algorithms. In its crisp form, it allocates a pixel to a class on the basis of probability of class belonging to that pixel given by (1); pixel being is allocated to the class with the highest probability. 
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Where P = a prior probability of the class, if known, N = number of bands, X = vector denoting spectral response of pixels, M and C are mean vector and variance-covariance matrices of spectral response of classes in various bands respectively, and are computed from the training dataset containing pure pixels of each class. The probabilities (1) when scaled from 0 to 1 may, however, strongly relate to actual class proportions of pixels on ground (Foody et al., 1992), and thus may be considered as fuzzy outputs from an MLC.

2.2 Linear Mixture Modeling (LMM)

The LMM exhibits a linear relation (2), based on the assumption that the spectral response (i.e., the digital number, DN) of a pixel is a linear sum of spectral response of the constituent classes weighted by their corresponding proportional area on ground. 

X = Mf + e



(2)

Where, M = end member spectra matrix (such as mean spectral response), f = vector of class proportions and e = a noise vector. With X and M known, a least squares adjustment is performed to compute f minimizing the sum of squares of the noise or error. Both constrained and unconstrained solutions may be implemented (Settle and Drake, 1993). In the end member spectra matrix columns represent the pure spectral signatures of classes and may be obtained either from average spectral response of pure pixels of each class in the image similar training pixels in MLC or from laboratory and field spectral measurements of the classes or by performing principal component analysis on the dataset.

The class proportions for a pixel obtained from (2) may be negative for some classes. In such cases, the proportions are usually scaled such that the negative proportions are set to zero and the remaining positive proportions are normalized to one within a pixel.
However, both MLC and LMM are statistical methods, which require that the data follow their statistical distribution assumptions. Many a times, these assumptions are not met and thus distribution-free methods such as fuzzy set based, ANN and KB may be more appropriate.

2.3 Fuzzy c-Means (FCM) clustering

FCM clustering is a popular fuzzy set based method. It is an unsupervised classifier but can, however, be modified to run in a supervised mode (Foody and Arora, 1996). The FCM is based on an optimization procedure, wherein fuzzy c-partition (i.e., class membership values) is obtained by minimizing the generalized least-square error function given by (3) (Bezdek et al., 1984):
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Where, V = vector of cluster centers, uij = class membership values of a pixel, c, n and k are number of classes, pixels and bands respectively, m = a weighting exponent (1 ( m ( (), which controls the degree of fuzziness, and ║* ║A is the squared distance (dij) between DN value of a pixel Xj and a fuzzy mean Vi. 

Thus, the outputs from an FCM are a set of class membership values for a pixel. The magnitudes of class membership are related to the class proportions of pixels on ground. 

2.4 Back Propagation ANN

An ANN comprises of a relatively large number of processing units called neurons that work in parallel to classify input data into output classes. Generally, a feed-forward multi-layer network is adopted that contains three layers; input, hidden and output. From remote sensing image classification angle, the input layer consists of units equal to the number of bands and thus receives the input data in the form of DN values. The units in the hidden layer(s) are determined by trial and error procedure whereas the units in the output layer denote the number of classes to be mapped. Each unit in a layer is connected with every unit in the next layer. These connections carry weights. Data provided to input neuron is multiplied by the connection's weight (assigned randomly in the beginning) and is summed to derive the net input to the neuron 
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Where, 
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 = magnitude of the rth input 
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 = the weight of the connection. The net input is then transformed by an activation function to produce an output for that neuron. The most common form of the activation function is a sigmoid function:
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Where
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O

= output for the unit S and 
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= a gain parameter. The determination of appropriate weights of the connections is referred to as learning or training. Various learning algorithms either supervised or unsupervised may be used. Among the supervised algorithms, the back-propagation algorithm has been widely used in remote sensing studies. In this algorithm, an error function (E), determined from a sample of target (known) and network derived outputs, is minimized iteratively. The process continues until E, given by (6), converges to some minimum value and the adjusted weights are obtained.
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Where Ti  = target output vector, Oi = network output vector and n = number of training pixels. Once the appropriate weights of all the connections are found, the network is assumed trained. After the network is trained to the desired accuracy, the adjusted weights are used to determine the outputs of the entire image. Sometimes, while determining the weights, a learning rate and a momentum factor are also adopted. The network outputs are called as activation levels. For fuzzy classification, these activation levels are scaled to range from 0 to 1 for a pixel to produce fuzzy outputs (Foody, 1996).

2.5 Knowledge Based (KB) System 

KB system is used to classify remote sensing data on the basis of knowledge acquired from the experts in the field. The conventional way of representing the knowledge is to formulate a set of rules in the form of If-Then-Else statements. A fuzzy knowledge base consists of production of fuzzy rules (Tso and Mather, 2001). For example, a rule for crisp classification may be written as,

If DN value is between 100 and 250

Then the pixel is assigned to the class ‘vegetation’  

Whereas, for fuzzy classification, a fuzzy rule may take the form as,

If DN value in middle

Then the pixel is assigned to ‘vegetation’ with strength w. 

where w = class membership value.

As is clear above representations of fuzzy methods that mixed pixels are taken into account only in the allocation stage of classification.

3. MIXED PIXELS IN TRAINING STAGE 

    OF A CLASSIFICATION

Conventionally, a supervised classification assumes that training pixels are pure. However, it may be difficult to define a training set of an appropriate size containing only pure pixels, and therefore the urge to include mixed pixels. To incorporate mixed pixels in training stage, actual class proportions of pixels may have to be known beforehand from known data sets. The training data statistics, such as mean and variance covariance, may be weighted by actual proportions to generate fuzzy statistical parameters (Wang, 1990). MLC to be implemented in fully fuzzy mode utilizes this concept. In supervised version of FCM algorithm, the mixed pixels are incorporated by default due to the fuzzy c-partition matrix, which depends upon class membership value of the mixed pixel. In order to include mixed pixels in LMM, the model is first run in reverse mode by inputting the class proportions of the mixed pixels to determine the end member spectra, which is then input to LMM to run in forward mode to determine class proportions of unclassified mixed pixels. The concept is to rectify the class spectral responses derived from a training set containing mixed pixels to simulate the response that would have been derived from pure pixels (Foody and Arora, 1996). For ANN classifier, the target output of the pixels are assigned the actual proportions of the classes instead of the code of the class, thus accounting for mixed pixels in training stage.

4. MIXED PIXELS IN TESTING STAGE

    OF A CLASSIFICATION

The accuracy of the classification is assessed in the testing stage. A typical strategy is to select a sample of testing pixels, and matching their class allocation with the actual class on reference data. The pixels of agreement and disagreement are summarized in an error matrix (Congalton, 1991), which is then used to derive a range of accuracy measures such as overall accuracy, producer’s and user’s accuracy, and kappa coefficient etc. (Arora and Ghosh, 1998). These measures may be appropriate when a pixel is associated with one class in the classification and one class in reference data (i.e., the pure pixels). Therefore, use of these measures to evaluate fuzzy classifications may degrade the accuracy. This is primarily due to the fact that in order to use these measures, the fuzzy classification has to be hardened by specifying the pixel with the class having the highest class membership to produce crisp classification. Therefore, mixed pixels may have to be used in the testing stage to derive alternative accuracy measures such as entropy, Euclidean distance, cross-entropy and correlation coefficient, each has its own merits and demerits.

Entropy shows how the strength of class membership in the classification output is partitioned between the classes for each pixel (Foody, 1995). The value of entropy is maximized when the probability of class membership is partitioned evenly between all the classes and minimized when it is associated entirely with one class. This is, however, only appropriate for situations in which the output of the classification is fuzzy whereas the reference data are crisp. There may be ambiguity present in the reference data as these are also often not error-free, and may therefore be fuzzy. To accommodate fuzziness in both the classification output and the reference data, measures such as Euclidean and L1 distances (Foody and Arora, 1996), and cross-entropy (Foody, 1995), which measure the closeness between the two data sets may be used. A small value of these measures indicates that the classification is accurate. To assess the accuracy of individual classes of a fuzzy classification, a correlation coefficient obtained from the two fuzzy outputs may be used. The higher the correlation coefficient, higher is the classification accuracy of a class. Recently, the concept of fuzzy error matrix has also been put forth (Binaghi et al., 1999) to assess the accuracy of fuzzy classification but its efficacy needs to be explored.

5. CONCLUSIONS

Fuzzy classification methods are attractive for land cover classifications from remote sensing data. Most of the studies have focused on generation of fuzzy outputs and thus considered the mixed pixels only in the allocation stage. When the image contains abundance of mixed pixels (i.e. IRS Wifs), their incorporation in training and testing stages of a classification becomes mandatory in order to produce appropriate land cover classifications.
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